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A method to elicit beliefs as most likely intervals

Karl H. Schlag∗ Joël J. van der Weele†

Abstract

We show how to elicit the beliefs of an expert in the form of a “most likely interval”, a set of future outcomes that are

deemed more likely than any other outcome. Our method, called the Most Likely Interval elicitation rule (MLI), asks the

expert for an interval and pays according to how well the answer compares to the actual outcome. We show that the MLI

performs well in economic experiments, and satisfies a number of desirable theoretical properties such as robustness to the

risk preferences of the expert.
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1 Introduction

In many instances, uncertainty about future events is the

main obstacle to making good decisions. To reduce uncer-

tainty, people frequently consult others who have different

or superior information. The consultation may concern to-

morrow’s temperature, future market conditions, an interest

rate or stock price, or the actions of a politician or business

competitor.

We propose a novel method for how to get information

from an expert in the form of an interval. Intervals have the

the advantage that one need not commit to a specific number

nor deal with complex mathematical objects (Mahieu et al.,

2014). Moreover, reporting an interval gives the expert the

opportunity to provide information about the location of her

beliefs and her uncertainty at the same time. Our method

relies on monetary incentives. We propose to pay the expert

based on the width of the specified interval and whether or

not the unknown outcome lies in the interval. These incen-

tives give the expert a reason to think well about her report

and allows, given standard assumptions on the expert’s de-

cision making process, to make inferences about her beliefs.

Our payment method incentivizes of the expert to select a

“most likely interval”, where any event inside the interval is

at least as likely to occur as any event outside the interval.

It features an adjustable parameter to influence the width

of the reported interval. The inferences from our method

are valid for all degrees of risk aversion of the expert, un-

like existing elicitation methods (Winkler & Murphy, 1979;
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Schmalensee, 1976). We show that our scoring rule per-

forms well in laboratory experiments and satisfies several

theoretical desiderata.

We now introduce our method in more detail in the con-

text of an example. Suppose a company wants to know what

an expert thinks the price of crude oil will be in the next

month. The company may ask for a single price estimate,

for example the expert’s understanding of the mean, median

or modal price. However, a point estimate of the crude oil

price provides no information on risk or dispersion, which is

vital for contingency planning. At the opposite extreme one

may wish to get a complete understanding of the expert’s be-

liefs and ask for the likelihood of each possible price level

(Matheson & Winkler, 1976; Harrison et al., 2013a). While

this provides maximal information, it is a time-consuming

way to elicit beliefs and presupposes fluency with the math-

ematical concept of a probability distribution.

An attractive and tractable alternative is to ask the expert

for the prices for next month that she regards as being most

likely. These prices could be few or many, concentrated or

widely dispersed. It seems is reasonable to assume, as we

will do in this paper, that the most likely prices are concen-

trated around some value (i.e. the mode), which means they

can be elicited as an interval.1 Our elicitation method asks

for a lower and upper bound of the likely price level, and

pays the expert only if the realized price lies in the inter-

val. The reward is a function of the width of the interval,

and does not depend on the end points. This implies that the

expert has an incentive to specify an interval that contains

only the most likely prices, which is why we call our rule

the Most Likely Interval elicitation rule (MLI).

Apart from capturing most likely price levels, the com-

pany may want to vary the precision of the report. For in-

stance, suppose that company profits are not very sensitive

to price deviations and all the company cares about is some

1For other cases where we think that most likely prices will be disjoint

we present a method for eliciting most likely sets.
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indication of the likely outcome. In this case, obtaining a

narrow interval with some highly likely events may be op-

timal even if this means a relatively low confidence that the

price will fall in the interval. By contrast, if the company

wants to assess the likelihood of an extreme price change, it

may prefer to obtain an wide interval with a high degree of

confidence.

To address these trade-offs, our elicitation method fea-

tures a parameter γ that can be chosen freely, and regulates

how much the expert is punished for specifying a wide inter-

val. Increasing this penalty will result in a smaller reported

set of most likely events and thus will decrease the confi-

dence of the expert that the price will obtain in the specified

range. Using a formal model of how the expert makes de-

cisions (i.e. subjective expected utility maximization) we

designed the MLI such that each expert will include at least

a mass of γ in the interval. We therefore refer to γ as the

minimal confidence level.

In order to discipline the expert not to present an inter-

val that is too large, we need to quantify what large means.

To this end, we assume bounds on the range of potential

outcomes, and the MLI punishes the width as a fraction of

this range. For example, when the outcome of interest is a

percentage then the natural range is from 0 to 100. In the

crude oil example, where these bounds are not given by the

problem itself, one can choose the range such that historical

observations falls well within them, like 1 and 200 US$ per

barrel.

To summarize, our rule guarantees from any expert who

maximizes expected utility, that the reported interval only

contains those events that the expert thinks are most likely

to occur and have a minimal confidence of γ. The actual

degree of confidence may be larger than γ, depending on

the degree risk aversion of the expert. More risk averse ex-

perts will tend to submit larger intervals to guarantee a pos-

itive payoff. In principle, one could try to counter act this

tendency, with the aim to elicit an interval with confidence

close to γ, by designing a different rule for each expert. In

most applications there is not enough information about the

expert to do so. Therefore, our rule is designed to capture

at least confidence γ for any risk averse or risk neutral ex-

pert. Experimental evidence indicates that the large majority

of people are either risk averse or risk neutral (e.g. Holt &

Laury, 2002).

The theoretical research on interval elicitation has fo-

cussed on obtaining an interval with a pre-specified like-

lihood, a so-called credible interval (Murphy & Winkler,

1974). However a credible interval itself does not neces-

sarily reveal any information on what events are most likely

as it can contain many least likely events. In fact, we show

that none of the previous interval elicitation rules, presented

by Winkler and Murphy (1979) and Schmalensee (1976),

elicits most likely events.

In contrast to other papers on interval scoring rules, we

explicitly compare different rules on the basis of their theo-

retical properties. Our rule is more generally applicable than

existing scoring rules, as it is designed for experts that are

either risk neutral or risk averse. In contrast, most of the ex-

isting literature on scoring rules focuses on risk neutral ex-

perts. Elicitation mechanisms that generalize to all risk pref-

erences exist, but only for means and probabilities (Schlag

et al., 2015). Moreover, these mechanisms are substantially

more complicated than our interval rule as they require ei-

ther randomized payoffs (Hossain & Okui, 2013; Schlag &

Van der Weele, 2013) or additional elicitations (Offerman

et al., 2009), and there is an open debate about the empir-

ical performance of such mechanisms (Selten et al., 1999;

Harrison et al., 2013b).

Finally, the empirical research on confidence interval elic-

itation relies mostly on unincentivized elicitation methods,

or ad-hoc scoring rules. For example, Cesarini et al. (2006)

reward the subjects if they correctly estimate the hit rate of

their previously stated intervals. Blavatskyy (2008) shows

that this method is easy to game. Other studies (e.g. Bude-

scu & Du. 2007) simply reward subjects proportional to

their accuracy rate, which can be gamed by simply report-

ing very large intervals regardless of beliefs. The underuse

of appropriate incentives is unfortunate, as there is evidence

that experimental subjects may be naturally inclined to re-

port different confidence levels than those requested by the

experimenter (Yaniv & Foster, 1997), and that appropriate

incentives improve accuracy of forecasts (Krawczyk, 2011).

This article proceeds as follows. The next section intro-

duces the elicitation environment and the MLI. Sections 3

and 4 provide examples of how to implement the rule and

discuss potential applications. Section 5 provides a more

formal discussion of the properties of the MLI, and Section

6 compares those properties to those of other scoring rules

in the literature. Section 7 discusses the robustness of the

rule to the assumptions we have made, and provides some

extensions. Section 8 concludes.

2 The elicitation environment and the

MLI

Consider an unknown event characterized by value x, real-

ized at some given time in the future, where the domain of x
is [a, b]. Often, a and b will be given by the problem, for ex-

ample when x is a percentage. If this is not the case, then the

boundaries can be chosen such that it is expected that the ex-

pert believes that x falls within this range for sure, with the

understanding that any x outside the range will be treated as

if it was at the boundary. To obtain the beliefs of the expert

about the values of x, we ask for an interval [L,U ] ⊆ [a, b],
and commit to how we will pay the expert on the basis of

the interval and the realized outcome.
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The Most Likely Interval elicitation rule (MLI) pays the

expert for her reported interval whenever the true realiza-

tion lies in the interval she submitted, where the payment is

strictly decreasing in the width of the reported interval. The

rule has a free parameter γ ∈ (0, 1). The payment received

when submitting and interval [L,U ] when value x is real-

ized is denoted by SM (L,U, x), and depends on the width

W = U − L of the interval as follows

SM (L,U, x) =

{
(

1− W
b−a

)g

if x ∈ [L,U ]

0 if x /∈ [L,U ]
(1)

where g = 1−γ
γ

. If γ = 1/2 then it obtains its simplest,

linear form:

SM (L,U, x) =

{

1− W
b−a

if x ∈ [L,U ]

0 if x /∈ [L,U ].

The properties of the rule are invariant to any affine transfor-

mation of SM . This means that one can regulate the amount

paid out to the expert by multiplying the payoffs with an ap-

propriate number. The rule can be applied to any random

variable X that has support in [a, b]. In particular, it also

applies to transformations of X , like log(X) or to cX + d,

as long as one transforms the boundaries a and b in the same

way.

We designed the MLI to be able to make inferences from

the elicited interval about the beliefs of the expert under

some assumptions on how the expert makes choices. Sup-

pose the beliefs of the expert of a random variable of interest

X can be described by the cumulative density function FX .

We assume these beliefs satisfy the following two assump-

tions: (i) FX is a continuous distribution with at most one

mass point and density f. (ii) FX is single peaked, which

means that the likelihood of an event decreases as one moves

away from an event that has the highest likelihood. More

formally, X is single-peaked if there exists x0 such that f is

increasing in x for x ≤ x0 and decreasing in x for x ≥ x0.

Any value x0 with this property is called a mode of X.2 We

believe the assumption of single-peakedness makes sense

under many circumstances. In cases where it does not, the

MLI can easily be extended to allow for multiple intervals

as outlined in Section 7.

Suppose now that the interval specified by the expert,

denoted by [L∗, U∗], is chosen exclusively on the basis of

monetary payoffs SM . Then the expert is best off by plac-

ing an interval with width W within the range [a, b] where it

“covers” or contains the true event with the highest prob-

ability. As beliefs are single-peaked, the reported inter-

val [L∗, U∗] will contain all values with a likelihood above

some threshold, and thus contains a mode of X. We refer to

this key property as “most likely”.

2Note that x0 is the only candidate for a point mass so we can let x0

denote the mass point whenever it exists.

Figure 1: Relation between the width W (on the x-axis) and

payment SM (on the y-axis) for different values of γ and for

a = 0 and b = 1.
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The width W ∗ = U∗ − L∗ of the reported interval con-

tains further information about the expert’s uncertainty. To

see this, consider the dependency of MLI on the width W .

Increasing W increases the likelihood of being paid but de-

creases the payment itself. For small values of W, when the

expert is very certain about what will happen, an increase in

W/ (b− a) leads to an decrease in payment approximately

equal to −g. In Figure 1, we plot the payment as a function

of the width W of the interval for three cases, g = 1/2, 1
and 2, so for γ = 2

3 , 1 and 1
3 , and a = 0 and b = 1.

As γ increases, and g decreases, the incentives to increase

W become stronger. When γ is small then the expert has

the highest incentives to report a small interval. Choosing a

small value for γ can be of interest when one wishes to ob-

tain a point prediction about what is most likely to happen,

but one does not wish to force the expert to commit to a spe-

cific number. When γ is large then the interval will tend to

be large, and the events that are not included in the interval

can be considered ‘extreme’ or unlikely events.

If we assume that the expert is a subjective expected util-

ity maximizer with respect to the payoffs SM , we can also

make inferences about the total or joint probability that the

realization x will be in the interval. Since the parame-

ter γ influences the width, it also influences this probabil-

ity. In particular, if the expert is either risk neutral or risk

averse, the interval will cover at least the mass γ of the ex-

pert’s beliefs, as we will show in Section 5. More formally,

PFX
(X ∈ [L∗, U∗]) ≥ γ. This “coverage” property means

that the MLI provides information about the expert’s confi-

dence in the reported interval. In Section 5, we also show
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how more dispersed beliefs translate to wider intervals. In

this sense the width captures the expert’s degree of uncer-

tainty.

To summarize, the MLI can extract information about the

expert’s beliefs in terms of location, confidence and degree

of uncertainty.

3 Implementation: An example

In this section, we illustrate the implementation of the MLI

in an experimental context. To do so, we analyze the exper-

iment by Galbiati et al. (2013), in which both co-authors of

the current paper were involved and that saw, to our knowl-

edge, the first experimental implementation of the MLI.3

Experiment outline. The experimental context was a

strategic game between two players, called the minimum

effort game. In this game, both players had to choose an

“ effort level” e, which could be any number between 110
and 170. The payoffs of πi of player i = 1, 2 depended on

the effort of both players as follows

πi(e1, e2) = min(e1, e2)− 0.85 ∗ ei. (2)

Thus, each player was rewarded according to the minimum

of the two effort levels, while “paying” a cost proportional

to her own effort.4

As we explained to the participants in the instructions, it

is optimal for each player to match the effort level of the

other player. If the own effort level exceeds that of the

opponent, one could increase payoffs by decreasing effort.

When effort is lower than that of the opponent, one could

increase payoffs by increasing efforts.5 Thus, a crucial de-

terminant of a player’s actions is what effort s/he thinks the

other player will choose. Moreover, the nature of uncer-

tainty about the other’s effort matters, because undershoot-

ing the other’s effort is less costly than overshooting it. This

makes the MLI a suitable elicitation method. We chose

γ = 0.5 to maximize the simplicity of the rule, and scaled

the payoffs in order to balance them with the earnings from

the effort decision.

The subjects played two rounds of this game. The second

round was played without feedback about the outcomes of

the first round. We consider two experimental conditions of

3The main results presented here regarding the width and the location

of the intervals in different experimental conditions are present in Galbiati

et al. (2013). The results concerning the accuracy of beliefs and the relation

between beliefs and effort are novel.
4The original experiment featured a third, inactive player who benefitted

from the minimum effort of the other players. For our purposes this player

can be ignored.
5As a consequence, all strategy profiles with two equal effort levels are

Nash equilibria. Equilibrium payoffs for both players are higher in Nash

equilibria with higher effort levels.

the experiment, which differed only with respect to the de-

tails of the second round. In the Control condition, 30 par-

ticipants played exactly the same game in the two rounds.

In the Incentive condition, with 34 participants, we imple-

mented a small penalty for deviating from the maximum

effort of 170. Formally, we added to the payoffs in (2) a

component − 1
2 (170 − ei). This implied that higher effort

became more attractive as it became less risky (although still

suboptimal) to overshoot the opponent’s effort.

Belief elicitation instructions. Beliefs were elicited in

both rounds of the game, simultaneously with the effort

choice. The MLI was introduced to the experimental par-

ticipants with the following instructions.

Guessing the other’s choice

We now ask you to make a guess about the number cho-

sen by the other player. The guess is made by specify-

ing a range (given by its lower bound L and its upper

bound U ) in which the other player’s choice is believed

to belong. The earnings in tokens of either player 1

or player 2 from making this guess are determined as

follows. A wrong guess (the actual number chosen by

the other player falls outside the specified range) yields

nothing. A correct guess (the actual number chosen by

the other player lies within the specified range) yields

15% of the difference between 60 and the width of the

range U −L. Therefore the smaller the specified range,

the higher the earnings if the guess is correct. However,

a smaller range also increases the risk that the guess is

not correct, in which case no tokens are earned. 6

Note that tokens where converted to real money at the end

of the experiment.

Results. First, we investigate if effort forecasts elicited

with the MLI were accurate. Note that the MLI elicits in-

dividual subjective beliefs that need not conform to the ac-

tual frequencies. Nevertheless, we can compare the average

elicited interval to the actual distribution to understand how

well-calibrated the subjects are on an aggregated level.

Figure 2 shows the actual frequency distribution of effort

in the Incentive condition (light/red line) and to the Control

(black line), which present the “right” answer for subjects

to estimate. In line with the theoretical predictions spelled

out in Galbiati et al. (2013), the distribution of effort in-

deed went up in the Incentive condition relative to the Con-

trol. The shaded areas in Figure 2 show the average intervals

6In addition, a more mathematical presentation was provided but not

read out loud by the experimenter. If the number Z chosen by the other

player lies in the range (it is greater than or equal to L and less than or

equal to U ) then the player who has chosen L and U gets 0.15 × (60 −

(U − L)) tokens. If this number Z does not lie within the range then the

player who has chosen L and U gets nothing.
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Figure 2: Distribution density plots of effort (thick lines)

measured in units 1
e

where e is effort. The shaded areas rep-

resent the corresponding average estimated interval in the

Incentive and Control condition.
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specified by the participants in the second round in the dif-

ferent conditions. As is clear from the figure, the location

of the intervals moved in line with the theoretical predic-

tions. What is more, in both cases, the average interval cap-

tures the mode of the distribution, and are not very far away

from capturing only the most frequent effort levels. From

these results it appears that the average intervals are well-

calibrated. This is a useful property in applications and sug-

gests that aggregated intervals have favorable properties, the

theoretical analysis of which we leave to future research.

Second, we investigate the width of the belief interval.

The average widths of the chosen interval in the first round

was about 18 points, and was actually slightly higher in the

Incentive condition. What interests us most is whether the

width of the interval responds to the incentives in the second

round of the game. Effort moved up in the Incentive condi-

tion and the standard deviation of effort declined from 19.4

in the Control to 17.5 in the Incentive condition. Thus, as ef-

fort became more predictable, it is natural to expect that the

dispersion of beliefs goes down in the Incentive condition.

As we will show in Section 5, this implies that the optimal

interval width declines. Figure 3 shows the change in the

mean width of the intervals between the rounds, with 95%

confidence intervals. Interval widths remained virtually un-

changed in the Control condition, while they declined sub-

stantially (by 26%) in the Incentive condition.

Finally, we investigate the relation between the beliefs

and effort that are elicited from the same person. Such a

connection demonstrates that people act upon their belief,

and support the conclusion that we elicited a relevant vari-

able. Figure 4 shows the relation between effort (x-axis)

and beliefs (y-axis), pooling both experimental conditions.

The chosen belief intervals are shown in grey. As is appar-

Figure 3: Change in the average interval width between the

first and second round in the Incentive and Control condi-

tion, with 95% confidence intervals.
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Figure 4: This graph shows the relation between effort (x-

axis) and beliefs (y-axis), pooling both experimental condi-

tions. The chosen belief intervals are shown in grey, except

two outliers at the top left, shown in black. The two fitted

lines pertain to the upper and lower bound of intervals re-

spectively, ignoring the two outliers. Dots indicate the effort

choice. These dots do not lie exactly on the 45 degree line

as we added some noise to avoid overlays of data points.
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ent from the black lines fitted to capture the lower and upper

bound of the belief interval, higher and more precise beliefs

are associated with higher efforts. Moreover, looking at the

dots that indicate the actual effort choice, we see that effort

is inside the belief interval in most cases. This is what one

would expect in this strategic situation where each player

has incentive to match the effort level of the other player.

In summary, we incentivized subjects with the MLI to
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predict the choice of their opponents in a strategic environ-

ment. We found that, first, average intervals specified by the

participants include the mode of the actual distribution and

are not far from capturing the most likely events. Second,

both the width and the locations of the intervals respond to

our experimental manipulation in a way that was in line with

theoretical predictions. Third, there is a robust relationship

between the specified beliefs about the opponents and the

strategic choices in the experiment. These findings indicate

that the MLI is a reliable method to elicit beliefs in this con-

text.

4 Applications

In this section we provide an overview of potential applica-

tions of the MLI. To do so, we review applications of MLI

in previous experimental work and discuss potential appli-

cations in finance, management and other settings.

4.1 Applications in experiments

Based on earlier versions of this paper, the MLI has been

implemented in economic experiments to elicit expectations

about a diverse set of variables. These experiments demon-

strate the flexibility of the MLI both in the type of expec-

tation that can be elicited and in the way that the resulting

data can be analyzed.

Elicitation has taken place in both strategic and non-

strategic settings. As an example of the latter, Peeters and

Wolk (2014) use the MLI to elicit repeated forecasts about

realizations of a random variable. Examples of strategic set-

tings are the use of the MLI to elicit beliefs about contribu-

tions to a public good (Cettolin & Riedl, 2013) or a risk shar-

ing fund (Tausch et al., 2014). The MLI has also been used

to elicit beliefs about characteristics of other experimental

participants, such as their beliefs (Peeters et al., 2015) or

risk aversion (Cettolin & Riedl, 2015).

When it comes to analysis of the data, some authors use

the midpoint of the interval as a measure for the location

of beliefs, either as an explanatory variable in regressions

(Cettolin & Riedl, 2013; Peeters et al., 2015) or as the ob-

ject of non-parametric comparisons to assess the importance

of beliefs in different experimental conditions (Tausch et al.,

2014; Cettolin & Riedl, 2015). With respect to the width of

the interval, Peeters et al. (2015) uncover differences in the

uncertainty of participants in different strategic roles. Cet-

tolin and Riedl (2013) find a positive correlation between a

measure of risk aversion of the participants and their elicited

interval width, a correlation which is significant at 1%.7 Fi-

nally, Peeters and Wolk (2014) demonstrate how to aggre-

gate the elicited intervals of multiple individuals and show

7This result is not reported in their papers, but confirmed in personal

correspondence.

that the calibration of forecasts about the realization of a

random variable improves with the number of individuals.

One potentially interesting application of the MLI relates

to measuring overconfidence with intervals. Countless stud-

ies show that 90% confidence intervals elicited without in-

centives are accurate much less than 90% of the time (Russo

& Schoemaker, 1992; Moore & Healy, 2008). Yaniv and

Foster (1997) argue that participants do not necessarily re-

port the confidence levels requested by the experimenter, but

tend to make their own normative trade-offs between infor-

mativeness and accuracy. Appropriate incentives, such as

those provided by the MLI could help reduce the miscom-

munication between experimenter and participant. Indeed,

Krawczyk (2011) shows that providing incentives for truth-

ful elicitation improves results. In Section 6, we argue that

the MLI may be a good alternative to the incentives used in

Krawczyk (2011), although this remains to be tested empir-

ically.

4.2 Real world applications

Estimations in the form of intervals play a role in many ap-

plications. Perhaps the most salient one is in weather fore-

casting, where they are common in forecasts of tempera-

tures. Indeed, a literature exists in weather forecasting that

investigates the interval reports of weather forecasters (e.g.

Hamill & Wilks, 1995). Forecasts of financial variables such

as inflation or growth rates are also often given as confidence

intervals, since risk plays an important role in financial de-

cisions. For instance, trader’s buying and selling strategies

depend on corridors in which prices are expected to lie. The

MLI can be used to elicit such a corridor, by identifying

L and U by parallel lines that have distance U − L. Cen-

tral banks can use the MLI to elicit intervals from economic

experts about future unemployment and inflation, and use

these estimates construct contingent policies.

Financial officers in businesses can use interval forecasts

to plan continent pricing strategies or sales targets. Future

prices and sales depend on many factors unknown to man-

agers, who could elicit intervals from employees in order to

improve the realism of targets. Even current performance

may be hard to measure, and could be elicited as interval es-

timates from employees. In this context, the free parameter

γ in the MLI is useful to communicate the desired level of

precision. In Section 7 we also explain how, with a small

modification, one can also use the MLI to elicit estimates of

tail risks, like the common measure Value at Risk.

Interval forecasts elicited with MLI may also represent

a useful complement to classic Confidence Intervals (CIs)

derived from statistical models, which are one of the most

popular statistical tools for understanding uncertainty. The

two intervals differ in several ways. First, while CI refer

to the information in the data about the true state, elicited

intervals refer to the information contained in the beliefs of
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an expert. Second, while CIs derived from statistical models

would contain the outcome with probability equal to γ, the

MLI elicits most likely intervals which contain the outcome

with probability of at least γ.

5 Theoretical properties of the MLI

The previous sections have shown how one can elicit be-

liefs using the MLI and informally discussed some of the

properties of the elicited interval. In this section, we discuss

the theoretical properties of MLI and the associated infer-

ences more formally and extensively. Our companion paper

(Schlag & Van der Weele, 2014) provides additional discus-

sion of the theoretical aspects of these properties. All proofs

are contained in the Appendix.

We consider the optimal response of expert endowed with

preferences over R that admit an expected utility repre-

sentation, denoted by u. An interval scoring rule S is

a mapping from [a, b]
3

to R
+ where S (L,U, x) is the

payoff that the expert receives after reporting the inter-

val [L,U ] and the event x is realized. Let [L∗, U∗] =
[L∗ (FX , S, u) , U∗ (FX , S, u)] denote be the interval cho-

sen by an expert with utility u and beliefs FX when paid

by the rule S. Let W ∗ (FX , S, u) = U∗ (FX , S, u) −
L∗ (FX , S, u) be its width and let M∗ (FX , S, u) =
PFX

(X ∈ [L∗ (FX , S, u) , U∗ (FX , S, u)]) be the probabil-

ity that the event belongs to the elicited interval.

The expert’s reported interval depends on her beliefs and

risk preferences. Inferences from interval elicitation that

depend on the assumption of risk neutrality of the expert

should be approached with caution. Holt and Laury (2002)

present evidence that most experimental subjects are risk

averse. Armantier and Treich (2013) and Offerman et al.

(2009) show that most subjects behave as if they are risk

averse in the context of belief elicitation. Hence we choose

to model the expert as being either risk neutral or risk averse

and consider only concave u.

We first show that an optimal interval always exists.

Proposition 1. For any single-peaked FX there exist L∗ and

U∗ with a ≤ L∗ ≤ U∗ ≤ b such that u (SM (L∗, U∗, X)) =
supL,U :a≤L≤U≤b u (SM (L,U,X)) .

The result is obtained by showing that u (SM (L,U,X)) is

upper semi-continuous. Then, by the extreme value theo-

rem, it attains a maximum on the compact domain.

In what follows we discuss inferences from the MLI,

where we separate inferences in terms of location and dis-

persion. Location refers to where the interval is located and

the properties of the boundaries. Dispersion refers to the

width of the interval, as measure of vagueness of the report

and uncertainty of the expert.

5.1 Inferences about the location of beliefs

We designed MLI to get an understanding of what the ex-

pert thinks is most likely to happen. The more likely events

should be contained in the interval, the less likely not, a

property we call “most likely”.

Definition 1 (Most Likely). We say that an interval scoring

rule S elicits most likely events for X and u if there exists a

z such that [L∗, U∗] = {x : f (x) ≥ z}.

We obtain the following result.

Proposition 2. The MLI elicits most likely events for all

single-peaked X and all u.

The proof of this result is trivial: If the interval does not

contain the most likely events, the expert could improve his

expected payoff by moving the interval. As we show below,

changing the penalty parameter for the width of the interval

will change the set of most likely events that is elicited, but

in every case the events in the interval are more likely than

those outside.

The following result follows directly from Proposition 2.

Corollary 1. The interval [L∗, U∗] elicited with the MLI

contains a mode of X for any single-peaked X and any u.

We do not know of any other scoring rule that elicits the

mode of a continuous distribution. Note that the MLI will

not necessarily cover all modes of X . For example, if X is

uniformly distributed on [a, b] then each x ∈ [a, b] is a mode

of X .

In addition, we can prove that the interval will contain

another common location parameter if the penalty for a high

width is relatively low.

Proposition 3. If γ ≥ 1
2 , the interval [L∗, U∗] induced by

MLI contains the median for all single-peaked X and all

concave u .

This result is a direct consequence of the fact, proved below,

that the interval will contain the realization with probability

of at least γ.

One may wonder whether the interval induced by MLI

will also include the mean of X . The example below shows

that MLI does not cover the mean for sufficiently skewed

distributions. For such distributions the mean does not nec-

essarily provide a good indicator of the concentration of

mass, so we consider its elicitation an alternative objective

to eliciting the most likely events.

Example 1 Consider ε > 0 and assume that X is dis-

tributed such that Pr (X = 0) = 1 − ε and fX (x) = ε
for x ∈ (0, 1] . Note that this distribution is single-peaked

and has expected value EX = ε/2. Since MLI elicits the

most likely events, L∗ = 0. The first order condition for
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U is ε (1− U∗) =
(

1−γ
γ

)

(1− ε+ U∗ε). It follows that

U∗ = max{0, γ − (1− γ)
(

1−ε
ε

)

}. Thus, if γ + ε ≤ 1 then

U∗ = 0 and the interval elicited under MLI does not include

the mean of X . �

To summarize, the interval elicited under the MLI con-

tains the mode, the most likely events and the median if

γ ≥ 1
2 . For skewed distributions it does not necessarily con-

tain the mean of the random variable. Note that the midpoint

of the interval plays no special role in the theory. However,

it is a useful measure of the location of the interval and can

be used together with the width, for instance in regressions.

5.2 Inferences about the dispersion of beliefs

Apart from location of typical or most likely events, we

would like to draw inferences about the dispersion of the

beliefs of the expert. We distinguish between two types of

dispersion, absolute and relative. Absolute dispersion refers

to the amount of mass contained in the interval for a given

expert. Relative dispersion refers to differences in disper-

sion between different experts or between the same expert

in different conditions.

5.2.1 Absolute dispersion

As argued in the introduction, in applications it will often be

useful to know how likely the expert thinks that the realized

event will belong to the interval. Specifically, it would be

useful to understand the relation between the absolute dis-

persion and the choice of γ. Ideally we would like to elicit

a γ·100% credible interval (Murphy & Winkler, 1974). A

rule that elicits a credible interval may be referred to as a

“proper” rule. However, it is not possible to design a rule

that is proper for different degrees of risk aversion of the ex-

pert. The reason is that sufficiently risk averse experts will

always specify larger intervals to secure a positive payoff.

Since we aim for a single rule that allows inferences for any

degree of risk preferences, we consider the weaker property

of “coverage” (Casella & Hwang, 1991).

Definition 2 (Coverage). An interval scoring rule S has

“coverage γ” for X and u if M∗ (FX , S, u) ≥ γ.

Thus, coverage requires that the optimal interval contains at

least γ·100% of the mass, so the expert is at least γ·100%

confident that the outcome will occur within the interval.

Note that this definition of coverage, like the definition of

the confidence intervals in statistics, implies that a rule with

coverage γ also has coverage γ′, for all γ′ ≤ γ. We obtain

the following result.

Proposition 4. The MLI has coverage γ for all single-

peaked X and all concave u.

The fact that coverage increases with γ is intuitive, since a

higher γ translates into a lower penalty for widening the in-

terval. We give a short sketch of the intuition behind the

proof, which is contained in the Appendix A. Denote by

M(w) the maximal subjective probability that can be cov-

ered by an interval for a given width W = w. Then the max-

imal expected utility of specifying an interval with width

w is equal to u(h(w))M(w) where h (w) = (1− w)
1−γ

γ .
The first order condition related to the optimal choice of the

width W is:

d (u (h(w))M(w))

dw
=

M ′ (w)u (h (w))−M (w)u′ (h (w))

(

1− γ

γ

)

h (w)

1− w
.

The first argument of the RHS is the marginal benefit of

expanding the interval, which consists of an increased like-

lihood of capturing the realized event. The second term is

the marginal cost of doing so, which consists of a decreased

payment if the realized event is in the interval. We know

that u is concave (by assumption) and M is concave in w
because of single-peakedness. Using these facts, we show

in the proof that M(w) < γ implies that the derivative with

respect to the width is positive, so that the expert would like

to expand the interval.

5.2.2 Relative dispersion

In some applications it will be useful to use the elicited re-

ports for the purpose of comparing the beliefs of different

experts or the beliefs of the same experts at multiple points

in time. It turns out that the width of the elicited interval can

provide a useful measure for both types of comparisons.

First, we show that the width of the interval increases

when beliefs become noisier in the following sense.

Definition 3. Xε is noisier than X if

Xε =

{

X with probability 1− ε

Y with probability ε,

where ε ∈ [0, 1] and Y is uniformly distributed on [a, b].

This definition says that noise increases if beliefs are closer

to the uniform distribution. We consider noisiness to be an

intuitive measure of uncertainty, since the uniform distribu-

tion can be interpreted as the case where the expert has no

information. Note that under this notion of noisiness, un-

like a mean preserving spread, the expected value typically

changes when noise increases.

Proposition 5. Assume γ ≥ 1/2. If X ′ is noisier than X ,

then W ∗ (FX , SM , u) ≤ W ∗ (FX′ , SM , u) holds for all

single-peaked X and concave u.
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Proposition 5 establishes that an increase in noise translates

into a (weakly) wider reported interval.

Second, one would expect that experts who are more risk

averse will specify larger intervals, since they are more wor-

ried about getting a payoff of zero. This intuition can be for-

malized as follows. We say that ũ is more risk averse than u
if there is a concave function g such that ũ (x) = g (u (x))
for all x.

Proposition 6. Assume γ ≥ 1/2. If û is more risk averse

than u, then W ∗ (FX , SM , u) ≤ W ∗ (FX , SM , û) for all

single peaked X.

Proposition 6 tells us that a more risk averse expert will al-

ways specify a weakly larger width.8

To summarize, the width of the interval allows two kinds

of comparative inferences. When u can be reasonably held

constant, for example by repeatedly eliciting intervals for

the same expert over time, one can falsify the hypothesis

that the beliefs of an expert become noisier. This is impor-

tant, since the noisiness of the distribution can be interpreted

as a proxy of uncertainty, which will be relevant in many

applications. In the same vein, if X can be assumed to be

constant across different experts, for example across exper-

imental participants who received the same information, the

interval width gives information about their relative degrees

of risk aversion.

The results from experimental studies using the MLI dis-

cussed above confirm these comparative statics. In the ex-

periment discussed in Section 3, average interval widths

(measured within-subject) declined substantially in a treat-

ment where uncertainty about the other player’s actions was

hypothesized to go down. As discussed in Section 4, Cet-

tolin and Riedl (2013) find a positive and strongly significant

correlation between a measure of risk aversion and interval

width.

6 Comparison to other interval scor-

ing rules

The literature on scoring rules for belief elicitation focuses

on the elicitation of point beliefs rather than intervals. Nev-

ertheless, we have found two scoring rules for interval elic-

itation in the literature that have been justified in terms of

desirable properties.9 Winkler and Murphy (1979, WM79

8The proof of Proposition 6 reveals that

[L∗ (X,SM , u) , U∗ (X,Sγ , u)] ⊆ [L∗ (X,SM , û) , U∗ (X,SM , û)] .
9A third rule suggested by Casella and Hwang (1991) is used with some

variations to elicit parameters of normal distributions. It is defined by

S(L,U, x) = 1{L≤x≤U} − k(U − L). This rule does not have good

properties in our setting with general distributions. For instance, in order

to have coverage when beliefs are uniformly distributed on [a, b] one needs

k < 1

b−a
, but this implies that [L,U ] = [a, b]. There is an additional

literature that has investigated optimal intervals under particular scoring

rules. Aitchison and Dunsmore (1968) and Winkler (1972) consider op-

hereafter). It is applied in Hamill and Wilks (1995) and

Krawczyk (2011), and discussed in some detail in Gneit-

ing and Raftery (2007). Up to an affine transformation, this

rule is given by

SWM79 (L,U, x) =− (L− x) 1{x<L} − (x− U) 1{x>U}

−

(

1− γ

2

)

(U − L),

where 1E is an operator that is 1 if the event E is true and 0
otherwise. In words, this rule punishes the expert for speci-

fying a larger interval width, and for the distance of x from

the interval bound if x is outside the interval.

The second scoring rule is proposed in Schmalensee

(1976, S76 hereafter). Up to an affine transformation, it is

given by

SS76 (L,U, x) =− (L− x) 1{x<L} − (x− U) 1{x>U}

−

(

1− γ

2

)

(U − L)−

∣

∣

∣

∣

x−
L+ U

2

∣

∣

∣

∣

.

This rule is similar to SWM79, but it adds an extra penalty

if the realization is inside the interval, but away from the

mid-point.

The main reason SS76 and SWM79 have been discussed in

the literature is that they are proper if the expert is risk neu-

tral. Winkler and Murphy (1979) show that SWM79 elicits

the 1−γ
2 and 1+γ

2 quantiles if the decision maker is risk neu-

tral, thus tracking the mass in the tails of the distribution.

As we argued above, risk neutrality is likely to be violated

in experimental settings, limiting the usefulness of this prop-

erty. We prove in our companion paper (Schlag & Van der

Weele, 2014) that both rules satisfy the coverage criterion.

However, neither SS76 nor SWM79 elicits the most likely

events.10 To see this, consider a skewed distribution with

density f(x) = 1
2
√
x

, depicted in Figure 5. The bottom of

the figure shows the optimal intervals for a risk neutral ex-

pert under MLI, SS76 and SWM79.

The figure shows that SS76 and SWM79, do not capture

the most likely events, as the events to the left and outside

the interval are more likely to occur than those inside the

interval. Thus, one cannot generally infer from the stated

interval which events the expert thinks are most likely. This

result holds for all γ < 1. The reason is that these rules do

not reward the expert for a correct prediction, but ‘punish’

the expert if the realization is very far from the chosen in-

terval bounds. This means that the expert does not want to

specify an interval too far away from either end of the range.

timal intervals under piece-wise linear scoring rules, where Aitchison and

Dunsmore (1968) assume that the scale parameter (variance) of the under-

lying distribution is known.
10Both rules do elicit the most likely events if the distribution is assumed

to be symmetric. While symmetry is a mathematically appealing property,

it is a restrictive condition and it does not seem generally plausible to us to

consider only symmetric beliefs.
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Table 1: Overview of the assumptions underlying the properties of the different interval scoring rules.

S76 WM79 MLI

Domain Distributions in R Distributions in R Ex-ante known finite bounds

Most likely Symmetric single

peaked distributions

Symmetric single

peaked distributions

Single peaked distributions. Can

be extended to apply to non-single-

peaked distributions (Section 7).

Proper Linear u and contin-

uous distributions

Linear u and contin-

uous distributions

Never

Coverage γ Concave u and sym-

metric distributions

Linear u and contin-

uous distributions

Concave u and single peaked distri-

butions

Mean covering Never Never Never

Figure 5: Optimal intervals for MLI, S67, and WM79 when

f(x) = 1
2
√
x

, γ = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

f(
x)

MLI

S76
WM79

Table 1 summarizes the properties of the different scoring

rules.

7 Extensions

In this section we discuss some of the assumptions that we

have made on the elicitation environment, and propose some

extensions of our rule.

7.1 Finite outcome spaces

In many applications the outcome x belongs to a finite

set. To capture this, assume that x belongs to X =
{a+ δ, a+ 2δ, .., a+ nδ = b} where δ > 0 is the distance

between any two points in the grid. In such cases we still

propose to use MLI. It turns out that all properties continue

to hold, except one can no longer guarantee coverage γ but

only coverage γ − ε, where ε is a decreasing function of δ.

7.2 Multi-peaked distributions and MLMI

Sometimes beliefs may reasonably be expected to have more

than one peak. Our method can be adapted to allow for this

possibility. Give the expert the opportunity to submit multi-

ple nonintersecting intervals. Pay the expert when the event

lies in one of the intervals the amount specified by SM given

in (1) except that W now is equal to the sum of the widths

of all intervals reported by the expert. We call the resulting

rule the Most Likely Multiple Interval elicitation rule, short

MLMI. All results carry over to this setting. The only dif-

ference is that now beliefs can distributed according to any

continuous distribution.

7.3 Eliciting tail risk and the OMLI

As we remarked in Section 4, the MLI can also be used to

understand tail risks. The idea is to elicit an interval in the

domain of losses, where one fixes the lower bound of the

interval at a loss of 0. The expert thus only chooses the

upper bound U , but payments are otherwise the same as for

the MLI, resulting in the One-sided Most Likely Interval

elicitation rule (OMLI).

As an example, one can follow this procedure to elicit

an upper bound for the Value at Risk (VaR). p-VaR for a

given probability p and a given time horizon is a popular

measure of risk of a portfolio. It is defined as the threshold

loss y, such that the probability that the loss on the portfolio

exceeds y is equal to p. To elicit an upper bound for y, ask

the expert for a value U , and pay according to the MLI if

losses fall in the interval [0, U ]. Here, the lower bound of

the interval is fixed at L = 0. To implement a given value of

p, set γ = 1 − p. Given the coverage property of the MLI,
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the value U then constitutes an upper bound on the p-VaR

as believed by the expert.

7.4 Improved precision and the TMLI

Another criterion to select amongst interval scoring rules is

to pick the one that pins down the mass γ with most preci-

sion. To get maximum precision, one would like to pick the

rule that implements the smallest width of the expert’s op-

timal interval for given coverage γ, beliefs FX and prefer-

ences u. The question is how one should aggregate over all

possible beliefs and preferences. Casella and Hwang (1991)

propose to measure precision in terms of the ‘worst case’

belief distribution that induces the maximal interval width,

and select the rule that minimizes this maximal width.

Definition 4 (Minmax width). S with coverage γ attains

“minmax width within S” if there is no scoring rule S̃ ∈ S
with coverage γ such that

sup
FX∈∆,u∈U

w
(

FX , S̃, u
)

< sup
FX∈∆,u∈U

w (FX , S, u) .

The problem with the scoring rules discussed above is that

when the expert is very risk averse, she will specify inter-

vals that are larger than necessary to cover γ. In order to

counter this tendency, one can specify a maximum width of

the interval for which the expert can earn positive payoffs.

The resulting Truncated Most Likely Interval elicitation rule

(TMLI) is given by

SM (L,U, x) =















(

1− W
b−a

)g

if x ∈ [L,U ]

and W ≤ γ (b− a)

0 otherwise.

Thus, there is no payment if the expert specifies an inter-

val larger than a fraction γ of the range [a, b]. The ratio-

nale is that for the worst-case uniform distribution, this frac-

tion covers exactly γ, while for other single-peaked belief

distributions one can cover γ in a smaller interval. Thus,

the TMLI punishes the expert for specifying a range that is

larger than necessary to obtain coverage, and in fact obtains

minmax width amongst all interval scoring rules with cov-

erage γ.11

8 Conclusion

Eliciting belief intervals is a good way to gain a quick and

intuitive understanding of both the events that the expert

11The proof of this claim is simple: In order to cover mass γ under the

worst case uniform distribution one needs to have an interval width of at

least γ(b−a). Hence the maximal width of any rule is at least this number.

The TMLI, by its definition, never elicits a larger interval, and hence attains

minmax width.

thinks likely to occur and the dispersion of an expert’s be-

liefs. The Most Likely Interval elicitation rule’ is easily im-

plementable, performs well in economic experiments and

satisfies a number of desirable theoretical properties. On

the basis of these qualities, we believe the MLI can be a

valuable tool for practitioners and experimentalists.

The appeal of confidence intervals merits further work

into interval scoring rules. On the empirical side, it will be

necessary to compare the performance of these and other in-

terval scoring rules. On the theoretical side, there are further

questions about the trade-offs in designing interval scoring

rules, for example between the complexity of the rule and

its desired theoretical properties (Schlag & Van der Weele,

2014). The aggregation of different intervals is also an im-

portant research area. While the results reported in Section 3

and in Peeters and Wolk (2014) indicate that aggregated in-

tervals are reasonably well-calibrated, the theoretical prop-

erties of these aggregates are not yet understood.

Another interesting topic is how to combine incentives for

truthful reporting with ex-post rewards for well-calibrated

forecasts. A naïve approach would be to collect a number

of realizations from the random process under considera-

tion and then use the MLI or one of the other interval scor-

ing rules to compare and score forecasts from several ex-

perts.12 However, such rewards may destroy incentives for

truth telling. For instance it is not clear how scoring on the

basis of multiple realizations changes the the incentives, as

experts may hedge their bets between different elicitations.

Another problem is that competition between experts may

induce them to become risk seeking, and specify smaller in-

tervals or even unlikely events.
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Appendix with proofs

We assume throughout that u (0) = 0, a = 0 and b = 1.
Note that this can be done without loss of generality by

appropriate rescaling of the scoring rule. If S is a scor-

ing rule for X ∈ ∆[0, 1] with coverage γ then S̄ is a

scoring rule for X ∈ ∆[a, b] with the same coverage if

S̄ (L,U, x) = S
(

L−a
b−a

, U−a
b−a

, x−a
b−a

)

.

Proof of Proposition 1. By an extension of the extreme

value theorem, we know that an upper semi-continuous

function attains a maximum on a compact domain.

Hence, the proof is complete once we show that

u (SM (L,U,X)) is upper semi-continuous in L and U.

Note that u
(

(1− (U − L))
1−γ

γ

)

is continuous in L and

U. So all we have to show is that Pr (X ∈ [L,U ]) is up-

per semi-continuous, i.e. for every L0, U0 with L0 ≤
U0 and every ε > 0 we need to show that there ex-

ists δ > 0 such that ‖(L,U)− (L0, U0)‖ < δ im-

plies Pr (X ∈ [L,U ]) ≤ Pr (X ∈ [L0, U0]) + ε. Since

Pr (X ∈ [L,U ]) ≤ Pr (X ∈ [min {L,L0} ,max {U,U0}])
it is sufficient to prove the claim for [L,U ] such that

[L0, U0] ⊆ [L,U ] .
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Note that Pr (X ∈ [L,U ]) = Pr (X ≤ U)−Pr (X < L).
Note that the cdf FX of X is right-continuous and non-

decreasing. This implies that Pr (X ≤ U) = F (U) is

right continuous in U . Thus, for every ε > 0 there exists

δ > 0 such that U ≤ U0 + δ implies that Pr (X ≤ U) ≤
Pr (X ≤ U0) + ε/2. Let F−

X (x) = P (X < x), which

is left-continuous and non-increasing. This implies that

Pr (X < L) = F−
X (L) is left continuous in L. Again, for

every ε > 0 there exists δ > 0 such that L ≥ L0− δ implies

that Pr (X < L) ≥ Pr (X < L0)− ε/2.

This implies Pr (X ∈ [L,U ]) ≤ Pr (X ∈ [L0, U0]) +
ε, which means that u (SM (L,U,X)) is upper semi-

continuous.

Proof of Proposition 4. The outline of the proof is as fol-

lows. In step 1 we derive some properties of the distri-

bution function of X . In step 2 we separate the problem

into the one of finding the best choice of L and U for given

W = w and the problem of how to find the best w. In step

3 we show that expected utility is increasing in w whenever

M (w) < γ.

Step 1. Since FX is monotonically increasing, it is dif-

ferentiable almost everywhere (see, e.g., Gordon 1994, p.

514).13 Let f be its derivative when it exists and right con-

tinuous otherwise. So f ≥ 0. Since X is single-peaked,

there exists x0 such that f is monotonically increasing for

x < x0 and monotonically decreasing for x > x0 and any

mass point of X must be equal to x0. In particular, X has

at most one mass point. Let ξ = Pr (X = x0) . Together,

this implies that FX (x) =
∫ x

0
f (x) dx+ξ ∗1{x≥x0}. Since

f is monotone on either side of x0, it follows that f is dif-

ferentiable almost everywhere, in particular f is continuous

almost everywhere.

Step 2. For each w ∈ [0, γ] let

h (w) = (1− w)
1−γ

γ and let M (w) =
P (X ∈ [L∗ (w) , U∗ (w)]) where (L∗ (w) , U∗ (w)) ∈
argmaxL,U :U−L=W u (SM (L,U,X)) . Thus M is in-

creasing in w, hence differentiable almost everywhere.

Step 3. Consider w ∈ [0, γ] such that M is differentiable

at w. Then
d(u(h(w))M(w))

dw
is equal to

M ′ (w)u (h (w)) +M (w)u′ (h (w))h′ (w)

= M ′ (w)u (h (w))−

M (w)u′ (h (w))

(

1− γ

γ

)(

h (w)

1− w

)

. (3)

13‘Almost everywhere’ means that the set of points where FX is not

differentiable has Lebesgue measure 0.

As u′ is concave, u′ (z) ≤ u (z) /z and hence

d (u (h(w))M(w)))

dw
≥

M ′ (w)u (h (w))−M (w)u′ (h (w))

(

1− γ

γ

)(

h (w)

1− w

)

.

(4)

Note that M is concave by single-peakedness of X. Hence,

the incremental mass M ′ (w) captured by increasing w is

decreasing, so the mass 1 − M (w) not covered is at most

equal to the marginal increase in mass M ′ (w) due to en-

largening w times the part of the parameter space not cov-

ered 1−w. In other words, 1−M (w) ≤ M ′ (w) (1− w) .
Substituting this in (4) and rearranging terms yields

d (u (h(w))M(w))

dw
≥

(

1−
M (w)

γ

)

u (h (w))

1− w
.

Hence we have shown that if w is such that M ′ (w) exists

and M (w) < γ then
du(·)
dw

> 0. Therefore, M∗ ≥ γ.

Proof of Proposition 5. Consider random variables X , Y
and Xε as in Definition 3. Let [L∗

ε, U
∗
ε ] be the optimal inter-

val selected under Xε and let W ∗
ε = U∗

ε −L∗
ε. Let Mε (w) =

P (Xε ∈ [L∗ (w) , U∗ (w)]) so Mε (w) = (1− ε)M0 (w)+
εw. Assume that d

dw
(u (h)M0) ≥ 0. As M0 is concave

in w, M ′
0 ≤ M0/w, it follows that d

dw
(u (h)M0) =

u′ (h)h′M0 + u (h)M ′
0 ≤

(

u′ (h)h′ + 1
w
u (h)

)

M0.

Hence, d
dw

(u (h)Mε) = (1− ε) d
dw

(u (h)M0) +
ε
(

u′ (h)h′ + 1
w
u (h)

)

w ≥ 0. As γ ≥ 1/2, SM is single-

peaked and hence W ∗
ε ≥ W ∗

0 .

Proof of Proposition 6. Again we use the first order condi-

tions which, given γ ≥ 1/2, are sufficient. Consider con-

cave functions u, û and g such that û (x) = g (u (x)). Using

concavity of g we obtain

d (u (h(w))M(w))

dw
= g′ (u (h))u′ (h)h′M + ûM ′

≥

(

1

u (h)
u′ (h)h′M +M ′

)

g (u (h)) .

So if

d (u (h(w))M(w))

dw
= u′ (h)h′M + u (h)M ′ ≥ 0

then d
dw

(û (h)M) ≥ 0 which completes the proof.

http://journal.sjdm.org/vol10.5.html
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